
The orientational relaxation dynamics were
shown to be directly connected with the
strength of the two H-bond groups, where the
weak H-bonds relax much faster than the
strong H-bonds. According to our results, the
number of strong H-bonds in the liquid is
substantially smaller than expected, which
may seem in contradiction with the small heat
of melting compared with the heat of subli-
mation for ice. However, quantum chemical
calculations have shown that each bond in the
proposed SD configurations is stronger than
the average bond in four-fold coordination
because of anticooperativity effects (27, 28).
Thus, the large number of weakened/broken
H-bonds in the liquid leads to only a small
change in energy. A recently developed
quantum chemical model (1, 27) that propos-
es the predominance in the liquid phase of
two hydrogen–bonded water molecules in
ring conformations is consistent with our re-
sults. Water is a dynamic liquid where H-
bonds are continuously broken and reformed
(29). The present result that water, on the
probed subfemtosecond time scale, consists
mainly of structures with two strong
H-bonds, one donating and one accepting,
nonetheless implies that most molecules are
arranged in strongly H-bonded chains or
rings embedded in a disordered cluster net-
work connected mainly by weak H-bonds.
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Asphalt Volcanism and
Chemosynthetic Life in the

Campeche Knolls, Gulf of Mexico
I. R. MacDonald,1* G. Bohrmann,2 E. Escobar,3 F. Abegg,2

P. Blanchon,4 V. Blinova,2 W. Brückmann,5 M. Drews,5

A. Eisenhauer,5 X. Han,6 K. Heeschen,2 F. Meier,2 C. Mortera,7

T. Naehr,1 B. Orcutt,8 B. Bernard,9 J. Brooks,9 M. de Faragó10

In the Campeche Knolls, in the southern Gulf of Mexico, lava-like flows of solidified
asphalt cover more than 1 square kilometer of the rim of a dissected salt dome at
a depth of 3000 meters below sea level. Chemosynthetic tubeworms and bivalves
colonize the seafloor near the asphalt,which chilled and contracted after discharge.
The site also includes oil seeps, gas hydrate deposits, locally anoxic sediments, and
slabs of authigenic carbonate. Asphalt volcanism creates a habitat for chemosyn-
thetic life that may be widespread at great depth in the Gulf of Mexico.

Salt tectonism in the Gulf of Mexico hy-
drocarbon province controls the develop-
ment of reservoirs and faults that allow oil

and gas to escape at the sea floor (1). More
than 30 years ago, investigators studying
the Gulf’s abyssal petroleum system (2)
photographed an asphalt deposit (3) among
salt domes in the southern Gulf of Mexico.
During exploration of the Campeche
Knolls, about 200 km south of the photo-
graphed site (Fig. 1, A and C), we have now
found numerous, deeply dissected salt
domes with extensive slumps and mass
wasting at depths of 3000 m or greater.
Massive, lava-like flow fields of solidified
asphalt, evidently discharged at tempera-
tures higher than the ambient bottom water
(4°C), have been colonized by an abundant
chemosynthetic fauna.

The Campeche Knolls are salt diapirs ris-
ing from an evaporite deposit that underlies
the entire slope region (4) and hosts the
Campeche offshore oil fields (5). Numerous
reservoir and seal facies have also been at-
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tributed to breccia associated with the
Chicxulub impact, which occurred �200 km
to the east (6). Guided by data from satellite
imagery (7) that showed evidence for persis-
tent oil seeps in this region (8), we mapped
the bathymetry of a 57-by-87-km area with
the German ship RV Sonne (9).

Resulting swath data show that the
northern Campeche Knolls are distinct,
elongated hills that average 5 by 10 km in
size, with reliefs of 450 to 800 m and slopes
of 10 to 20% (Fig. 1A). The crests and
flanks on 9 of the 22 knolls mapped contain
linear and crescent-shaped faults and slump
scarps. In many cases, the slumps are asso-
ciated with downslope sediment lobes that
extend as far as 4 km out over the adjacent
sea floor. The locations of persistent oil
seeps detected by satellite correspond to the
dissected salt structures, which indicate
that considerable sea-floor instability is as-
sociated with hydrocarbon discharge.

Visual surveys of one dissected knoll
(21°54�N by 93°26�W), which we named
Chapopote (10), revealed extensive surface
deposits of solidified asphalt, emanating
from points along the southern rim of a
broad, craterlike graben near the crest of
the structure (Fig. 1B). One subcircular
flow measured at least 15 m across and
comprised numerous concentric lobes
stacked higher toward the center; the entire
flow was fractured by ramifying radial
joints (Fig. 2, A and B). Other flows were
linear, bifurcated in places, up to 20 m wide
or greater, and extended far down the slope.

The morphologies of these deposits were
often blocky (Fig. 2B) or ropy (Fig. 2C),
similar to a’a or pa’hoehoe basaltic lava
flows. The video and navigation data indi-
cate that asphalt flows cover almost 1 km2

of the upper structure.
The biological community at Chapopote

was extensive and diverse. Concave joints
in the ropy asphalt were coated with white
microbial films (Fig. 2C). Vestimentiferan
tubeworms (cf. Lamellibrachia sp.) were
common, but were always observed in
close proximity to asphalt flows, which
they colonized by extending the posterior
ends of their tubes into sediments beneath
the flow edges (Fig. 2A) or into fissures
(Fig. 2D). Some tubeworm aggregations
were completely embedded in solidified
tar, indicating that they were later over-
come by flows (Fig. 2E). Large bivalve
shells, including the chemosynthetic family
Vesicomyidae (cf. Calyptogena sp.), were
widespread on the sea floor surrounding the
asphalt flows and among asphalt pillows
and cobbles (Fig. 2F). Shells and living
specimens of chemosynthetic mussels (cf.
Bathymodiolus sp. and Solemya sp.) were
recovered by grab sample along with highly
oiled sediments. Heterotrophic fauna in-
cluded galatheid crabs (Munidopsis sp.)
and shrimp resembling Alvinocaris sp., as
well as nonendemic deep-sea fish and in-
vertebrates (Benthodytes sp., Psychropotes
sp., and Pterasterias sp.). Crinoids and soft
corals were attached to asphalt pillows
found farthest downslope from the rim.

A video-guided grab recovered �75 kg
of asphalt, tubeworm tubes, and additional
associated sediments from the crest of the
knoll (Fig. 1B). There was scant hydrocar-
bon gas and no oil in these sediments (11)
(Table 1). The asphalt pieces included
small fragments and large, irregular blocks
weighing more than 10 kg. This material,
which was brittle and had no residual stick-
iness, shows columnar jointing and chilled
margins that indicate molten flow followed
by rapid cooling (fig. S1). A medical com-
puterized tomography scan of one of the
large blocks revealed a relatively low-
density mass with an outer, “weathering”
rind, an interior with regular folding, and
numerous occluded pebbles, the density of
which resembled carbonate (fig. S2). Sed-
iments surrounding the asphalt were com-
posed of a thin layer of brown organic
material overlying clayey, nannofossil
ooze. No H2S was detected (the detection
limit was 2 �M), and the presence of NO3

–

in a gradient from 14 to 4 �M over sedi-
ment depths from �1 to 10 cm below the
interface indicated that the surface sedi-
ments were oxidized.

A second grab targeted one of the few
bacterial mats observed at Chapopote. About
20% of this sample volume consisted of vis-
cous, liquid petroleum dispersed in veins and
pockets; asphalt was entirely absent. A sur-
face crust comprised slabs of authigenic car-
bonate with layers of oil pooled beneath.
Sediments were entirely anoxic with H2S
concentrations of 8 to 13 mM. Gas hydrate

Fig. 1. (A and B) Maps
of (A) the swath-
mapped region of the
Campeche Knolls and
(B) the Chapopote site
were compiled on-
board the RV Sonne.
Contour lines are in
meters below sea lev-
el. Yellow dots mark
locations where float-
ing oil was seen in sat-
ellite images through-
out the knolls. Gray
dots mark bottom
navigation fixes during
the photo-sled survey
of Chapopote. Red
dots show locations of
asphalt pieces or as-
phalt flows. Yellow
diamonds are grab-
sample locations. (C)
The regional setting of
the swath map (rect-
angle) and the location
of a 1971 photograph
(3) of an asphalt pillow
(arrow).
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formed thin layers in the surface sediments,
and numerous pieces floated in the surface
water as the grab was recovered on board the
ship. A negative chloride anomaly (482 mM)
in the upper 4 cm was consistent with gas
hydrate layers. An alkalinity profile showed
extremely high values from 29 to 35 mM,
which indicate the oxidation of hydrocarbons
by reduction of seawater sulfate.

Molecular and isotopic compositions of
the gas hydrate and sediment headspace from
the second grab sample indicate moderately
mature, thermogenic gas (Table 1). Aliphatic
and aromatic biological markers indicate an
Upper Jurassic–sourced, carbonate-rich oil of
at least moderate maturity, which is typical of
deep-water hydrocarbon seeps in the Gulf of
Mexico (12). Oily sediment extracts and as-

phalt pieces were composed of a degraded,
unresolved complex mixture of hydrocarbons
with a peak at n-C30 and a few resolved C29

to C32 hopanes. Concentration of carbon
dioxide in the oily sediment is high compared
to values from deep-water sediments of the
Gulf of Mexico (13). The high concentration
of carbon dioxide with a heavy carbon isoto-
pic composition may represent carbon diox-
ide migrating from a deep source with the
hydrocarbons or the dissolution of sediment
carbonates under acid conditions.

The size, extent, and morphology of the
asphalt flows observed at Chapopote entirely
distinguish asphalt volcanism from irregular
mats and pools of viscous tar described from
coastal (14) and continental slope (15) oil
seeps. Furthermore, the chemosynthetic biota
at Campeche Knolls exploit a variety of bio-
geochemical niches within the site, including
an unexplained association with asphalt. Lo-
calized seepage of oil and gas produces gas
hydrate, oil-saturated sediments, and oil trac-
es that float to the ocean surface. High con-
centrations of H2S within the upper sediment
column at these localities result from the
anaerobic oxidation of hydrocarbon (16, 17),
generating authigenic carbonates and a more
typical substratum for Lamellibrachia (18).
In contrast, sediments associated with asphalt
flows may remain little altered by anaerobic
oxidation of hydrocarbons; additional bio-
geochemical processes must occur within or
beneath the asphalt flows to support the prev-
alent tubeworm aggregations.

The collective data indicate that Chapopote
has been subjected to repeated, extensive erup-
tions of molten asphalt under conditions that are
probably incompatible with gas hydrate stabil-
ity (19). The mechanical energy of these erup-
tions coupled with the violent destabilization of
gas hydrate deposits contribute to the faulting,
slope failures, and mass wasting mapped at
Chapopote and other salt domes in the
Campeche Knolls. Additional sampling and
measurement will be required to clarify the
characteristics of asphalt discharge and the bio-
geochemical processes that allow chemosyn-
thetic organisms to thrive in association with
asphalt deposits. Pequegnat’s 1971 photograph
(3) of an asphalt pillow shows lava-like mor-
phology as well as a galatheid crab, a cri-
noid, and, although it was not noted by the
author, a solitary vestimentiferan (fig. S3).
Asphalt volcanism and associated deep-sea
life may therefore be a widespread process
in the Gulf of Mexico abyss. Satellite sur-
veillance could be an effective tool for
finding more of these features.
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Hydrocarbons in Hydrothermal
Vent Fluids: The Role of

Chromium-Bearing Catalysts
Dionysis I. Foustoukos* and William E. Seyfried Jr.

Fischer-Tropsch type (FTT) synthesis has long been proposed to account for the
existence of hydrocarbons in hydrothermal fluids. We show that iron- and
chromium-bearing minerals catalyze the abiotic formation of hydrocarbons. In
addition to production of methane (CH4aq), we report abiotic generation of ethane
(C2H6aq) and propane (C3H8aq) by mineral-catalyzed hydrothermal reactions at
390°C and 400 bars. Results suggest that the chromium component in ultramafic
rocks could be an important factor for FTT synthesis during water-rock interaction
in mid-ocean ridge hydrothermal systems. This in turn could help to support
microbial communities now recognized in the subsurface at deep-sea vents.

Vent fluids issuing from ultramafic-hosted
hydrothermal systems at mid-ocean ridges
not only contain abundant methane but are
also enriched in propane, ethane, and many
other dissolved hydrocarbons (1, 2). It is
likely that the occurrence and distribution of
these hydrocarbons is the result of FTT syn-
thesis, where oxidized forms of dissolved
carbon are reduced to hydrocarbons by reac-
tion with H2aq. In general, this process can be
described schematically as follows:

CO2aq � [2 � (m/2n)]H2aq3 (1/n)CnHm

� 2H2O (1)

The formation and distribution of alkanes
produced in hydrothermal experiments at el-
evated pressure and temperature suggest that
the reactions are catalyzed by minerals (3).
As such, the chemical and physical properties
of the catalyst play a key role in hydrocarbon

yield. For example, formation of relatively
small amounts of methane was reported in
experiments involving reaction of CO2-
bearing aqueous fluid with different minerals
(hematite, magnetite, olivine, serpentine, and
Ni-Fe alloy) (4, 5). The Ni-Fe alloy (awa-
ruite), in particular, appears to be an excellent
catalyst for CO2aq conversion to CH4aq (6).
Although abiotic methane was inorganically
generated during these experiments, no other
alkanes were produced. The relative lack of
hydrocarbons other than methane, however,
brings into question an origin by FTT synthe-
sis of the complex hydrocarbons in vent flu-
ids issuing from ultramafic-hosted hydrother-
mal systems (7). McCollom and Seewald (5)
speculated that it is only in the presence of a
discrete gas phase that abiotic synthesis of the
more complex hydrocarbon species may be at
all possible. Here, we report results of a
hydrothermal experiment indicating that Fe-
Cr oxide (e.g., chromite) is a catalyst for FTT
synthesis of longer chain hydrocarbons. The
chromium content of fresh oceanic ultramafic
rocks is nearly 3000 ppm (8–10) and is pref-
erentially concentrated in orthopyroxene (11,

12), a particularly reactive mineral in ultra-
mafic rocks (3, 13). Orthopyroxene alteration
can be expected to provide Cr for chromite, a
common accessory mineral, especially in
enstatite-rich peridotite or bastite.

Our experiments were performed at
390°C and 400 bars, conditions that approx-
imate those inferred for ultramafic-hosted hy-
drothermal alteration at Rainbow (36°N) and
Logatchev (14°N) on the Mid-Atlantic Ridge
(1, 2, 7). In addition to abundant hydrocar-
bons, vent fluids from these hydrothermal
systems have substantial amounts of dis-
solved H2aq (2). Reducing conditions un-
doubtedly result from the hydrolysis of oli-
vine, or more likely orthopyroxene, giving
rise to the formation of magnetite together
with talc and/or serpentine (3, 13).

Experiments were conducted in a flexi-
ble gold-cell hydrothermal apparatus (14 ),
which allows fluid sampling at experimen-
tal conditions while also permitting intro-
duction of fluid reactants (15 ). An added
advantage of the gold-titanium reaction cell
is its inherent lack of catalytic activity.
Therefore, high dissolved concentrations of
CO2 and H2 can coexist for long intervals at
temperatures and pressures as high as
400°C and 500 bars without generation of
appreciable amounts of reduced carbon
species (16 ). Thus, in the absence of ap-
propriate mineral catalysts, generation of
reduced carbon species is inhibited.

To trace carbon sources and sinks dur-
ing the experiment, we added 13C-enriched
NaHCO3 (�99% 13C) to the fluid. The
starting fluid also contained NaCl (0.56
mol/kg) to approximate the bulk chemistry
of axial vent fluids. Moreover, to facilitate
chromite formation under highly reducing
conditions (17 ), FeO was combined with
Cr2O3 and the 13C-bearing aqueous fluid
(18). The existence of FeO in amounts
greater than needed to form stoichiometric
chromite permitted the formation of mag-
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