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SUMMARY

The benefits of endurance exercise on general health
make it desirable to identify orally active agents that
would mimic or potentiate the effects of exercise to
treat metabolic diseases. Although certain natural
compounds, such as reseveratrol, have endurance-
enhancing activities, their exact metabolic targets re-
main elusive. We therefore tested the effect of path-
way-specific drugs on endurance capacities of mice
in a treadmill running test. We found that PPARb/
d agonist and exercise training synergistically in-
crease oxidative myofibers and running endurance
in adult mice. Because training activates AMPK and
PGC1a, we then tested whether the orally active
AMPK agonist AICAR might be sufficient to over-
come the exercise requirement. Unexpectedly,
even in sedentary mice, 4 weeks of AICAR treatment
alone induced metabolic genes and enhanced run-
ning endurance by 44%. These results demonstrate
that AMPK-PPARd pathway can be targeted by orally
active drugs to enhance training adaptation or even
to increase endurance without exercise.

INTRODUCTION

Skeletal muscle is an adaptive tissue composed of multiple my-

ofibers that differ in their metabolic and contractile properties,

including oxidative slow-twitch (type I), mixed oxidative-glyco-

lytic fast-twitch (type IIa) and glycolytic fast-twitch (type IIb) my-

ofibers (Pette and Staron, 2000; Fluck and Hoppeler, 2003). Type

I fibers preferentially express enzymes that oxidize fatty acids,

contain slow isoforms of contractile proteins, and are more

resistant to fatigue than are glycolytic fibers. Type II fibers pref-

erentially metabolize glucose and express the fast isoforms of

contractile proteins. Endurance exercise training triggers a re-

modeling program in skeletal muscle that progressively
enhances performance in athletes such as marathon runners,

mountain climbers, and cyclists. This involves change in meta-

bolic programs and structural proteins within the myofiber that

alter the energy substrate utilization and contractile properties

that act to reduce muscle fatigue (Pette and Staron, 2000; Fluck

and Hoppeler, 2003). Training-based adaptations in the muscle

are linked to increases in the expression of genes involved in

the slow-twitch contractile apparatus, mitochondrial respiration,

and fatty acid oxidation (Holloszy and Coyle, 1984; Booth and

Thomason, 1991; Schmitt et al., 2003; Yoshioka et al., 2003; Ma-

honey et al., 2005; Mahoney and Tarnopolsky, 2005; Siu et al.,

2004; Garnier et al., 2005; Short et al., 2005; Timmons et al.,

2005). These adaptations that improve performance can also

protect against obesity and related metabolic disorders (Wang

et al., 2004; Koves et al., 2005). Moreover, skeletal muscles

rich in oxidative slow-twitch fibers are resistant to muscle wast-

ing (Minnaard et al., 2005).

Given the numerous benefits of exercise on general health,

identification of orally active agents that mimic or potentiate

the genetic effects of endurance exercise is a long-standing, al-

beit elusive, medical goal. High doses of certain natural extracts

such as resveratrol can improve endurance (Lagouge et al.,

2006). The aerobic effects of resveratrol are thought to depen-

dent on activation of SIRT1-PGC1a coactivator complex in skel-

etal muscle. However, the downstream transcriptional factor(s)

targeted by SIRT1/PGC1a in mediating these effects are not

known. More importantly, both SIRT1/PGC1a and resveratrol

activate multiple targets, and thus whether there is a specific

signaling pathway that can be selectively activated by a synthetic

drug to improve endurance is not known.

Exercise training activates a number of transcriptional regula-

tors and serine-threonine kinases in skeletal muscles that con-

tribute to metabolic reprogramming (Bassel-Duby and Olson,

2006). We and others previously identified a critical role for

PPARb/d (henceforth referred to as PPARd) in transcriptional

regulation of skeletal muscle metabolism (Dressel et al., 2003;

Luquet et al., 2003; Schuler et al., 2006; Wang et al., 2004).

Overexpression of a constitutively active PPARd (VP16-PPARd)

in skeletal muscles of transgenic mice preprograms an increase
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Figure 1. Synthetic PPARd Activation in Mice

(A) Relative gene expression levels of Ucp3, Cpt1b, and Pdk4 in quadriceps

isolated from vehicle (V)- and GW1516 (GW)-treated wild-type mice, as well

as from muscle VP16-PPARd transgenic (Wang et al., 2004) (TG) and nontrans-

genic (WT) littermates. Data are presented as mean ± SEM (n = 4–9). * indicates

statistically significant differences between GW and V groups or TG and WT

groups (p < 0.05, unpaired student’s t test).

(B) Running endurance in sedentary mice. Endurance was tested in V- (open

bars) and GW- (black bars) treated wild-type mice before (Week 0) and after

(Week 5) treatment. Data are represented as mean ± SD (n = 6).

(C) Representative metachromatically stained frozen gastrocnemius cross-

sections from vehicle-treated sedentary (V), GW1516-treated sedentary

(GW), vehicle-treated exercised (Tr), and GW-treated exercised (Tr+GW)

mice. Type I fibers are stained dark blue.

(D) Type I fiber quantification (n = 3).

(E) Fold change in mitochondrial DNA to nuclear DNA ratio (n = 9).

Data in (D) and (E) are presented as mean ± SEM. * indicates statistical differ-

ences between V and indicated groups (p < 0.05, one-way ANOVA; post hoc:

Dunnett’s multiple comparison test).
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in oxidative muscle fibers, enhancing running endurance by

nearly 100% in untrained adult mice (Wang et al., 2004). One

of the best understood serine-threonine kinases is AMP-acti-

vated protein kinase (AMPK), a master regulator of cellular

and organismal metabolism whose function is conserved in

all eukaryotes (Hardie, 2007). In mammals, AMPK has been

shown to contribute to glucose homeostasis, appetite, and ex-

ercise physiology (Andersson et al., 2004; Hardie, 2007; Kubota

et al., 2007; Mu et al., 2001; Minokoshi et al., 2004; Thomson

et al., 2007). These observations raise the question as to

whether synthetic PPARd or AMPK agonists can reprogram

established fiber specification in adult muscle toward an overt

endurance phenotype. We have found that the PPARd agonist

GW1516 (shown to be bioactive in humans; Sprecher et al.

[2007]) enables mice to run 60%–75% longer and further than

the nontreated controls only when combined with exercise

training. This ‘‘super-endurance phenotype’’ is linked to a tran-

scriptional boost provided by exercise-activated AMPK

resulting in a novel endurance gene signature. A more critical

role of AMPK in the super-endurance phenotype is revealed

in our unexpected finding that the orally active AMPK agonist

AICAR is sufficient as a single agent to improve running endur-

ance by nearly 45% in nonexercised mice. Together, these re-

sults provide new insights into the pharmacological malleability

of muscle performance.

RESULTS

GW1516 Increases Muscle Gene Expression
but Not Endurance in Sedentary Mice
To examine whether treatment with PPARd ligands alone can

reprogram the muscle transcriptome and endurance capacity,

we treated wild-type C57Bl/6J age matched cohorts with

vehicle or GW1516 for 4 weeks. QPCR analysis of selective tar-

get genes confirmed that drug treatment induced oxidative

metabolic biomarkers such as uncoupling protein 3 (Ucp3),

muscle carnitine palmitoyl transferase I (mCPT I, Cpt 1b), and

pyruvate dehydrogenase kinase 4 (Pdk4) (Figure 1A). These

changes in gene expression were detected as early as 4 days

after treatment, as well as with drug concentrations ranging

from 2–5 mg/kg/day. Moreover, in all our gene expression stud-

ies, maximal effects of PPARd activation were detected in pre-

dominantly fast-twitch (quadricep and gastrocnemius) but not

slow-twitch (soleus) muscles (data not shown). In primary mus-

cle cells cultured from wild-type and PPARd null mice (Chawla

et al., 2003; Man et al., 2007), we confirmed that the induction

of oxidative genes by GW1516 is mediated via selective activa-

tion of PPARd in skeletal muscles (Figures S1A–S1C available

online). Moreover, this is similar to the expression changes

found in the same genes in muscles expressing the constitu-

tively active VP16-PPARd transgene (Wang et al., 2004)

(Figure 1A), supporting the concept that pharmacological acti-

vation of PPARd is sufficient to initiate an oxidative response in

adult skeletal muscle. To determine the functional effects of li-

gand, age- and weight-matched cohorts of treated and control

mice were subjected to an endurance treadmill performance

test before (week 0) and after (week 5) treatment. Curiously,

running performance was unchanged by GW1516 treatment
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(Figure 1B). Furthermore, long-term drug treatment of up to 5

months also did not change running endurance (data not

shown). These results indicate that pharmacologic activation

of the PPARd genetic program in adult C57Bl/6J mice is

insufficient to promote a measurable enhancement of treadmill

endurance.



Figure 2. Gene and Protein Expression in

Quadriceps

(A–C) Relative gene expression levels of FAO

(Ucp3, Cpt 1b, Pdk4) (A), fatty acid storage

(Scd1, Fasn, Srebf1c) (B), and fatty acid uptake

(Cd36, Lpl) (C) biomarkers in quadriceps from V,

GW, Tr, and Tr+GW groups. Data are presented

as mean ± SEM (n = 9). * indicates statistically

significant difference between V and indicated

groups (p < 0.05, one-way ANOVA; post hoc: Dun-

nett’s multiple comparison test).

(D) Protein expression levels of oxidative bio-

markers (myoglobin, UCP3, CYCS, SCD1) and

loading control (tubulin) in quadriceps (n = 3).
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GW1516 Remodels Skeletal Muscle
in Exercise-Trained Mice
Since endurance exercise remodels the skeletal muscle to pro-

gressively alter performance (Holloszy and Coyle, 1984; Booth

and Thomason, 1991; Schmitt et al., 2003; Yoshioka et al.,

2003; Mahoney et al., 2005; Mahoney and Tarnopolsky, 2005;

Siu et al., 2004; Garnier et al., 2005; Short et al., 2005; Timmons

et al., 2005), we speculated whether coadministration of

GW1516 in the context of exercise training might enhance an-

ticipated changes in fiber type composition and mitochondrial

biogenesis. The effect of GW1516 and exercise on fiber type

composition was determined via metachromatic staining of

cryosections of the gastrocnemius (Wang et al., 2004). As ex-

pected from the results of the running performance in

Figure 1B, there was no significant difference in the proportion

of type I fibers between vehicle- and GW1516-treated sedentary

mice (Figure 1C). In contrast, in trained mice, GW1516 increased

the proportion of type I fibers (by �38%) compared to the vehi-

cle-treated sedentary mice (Figures 1C and 1D). In addition to its

effects on the fiber type, exercise training increases skeletal

muscle mitochondrial biogenesis, which was measured as

a function of mitochondrial DNA expression levels via quantita-

tive real-time PCR (QPCR). Similar to type I fiber changes, mito-

chondrial DNA expression was not changed by drug alone but

was increased by approximately 50% with the combination of

exercise and GW1516 treatment (Figure 1E).

The effects of GW1516 treatment and exercise, singly or in

combination, on components of the oxidative metabolism of

fatty acids were further analyzed by measurement of the gene

expression levels of selective biomarkers for fatty acid b oxida-

tion. As expected, we found that previously examined genes

such as Ucp3, Cpt 1b, and Pdk4 were upregulated by GW1516

but showed no further induction with exercise (Figure 2A). Unex-
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genes that show no response to exercise

or drug alone but are robustly induced by

the combination. This intriguing response

profile includes a series of genes involved

in the regulation of fatty acid storage

(such as steroyl-CoA-desaturase [Scd1],

fatty acyl coenzyme A synthase [FAS,

Fasn] and serum response element bind-

ing protein 1c [SREBP1c, Srebf1c]) and
fatty acid uptake (such as the fatty acid transporter [FAT,

Cd36] and lipoprotein lipase [Lpl]) (Figures 2B, 2C, and 3).

We also measured the protein levels of selective oxidative bio-

markers including myoglobin, UCP3, cytochrome c (CYCS), and

SCD1. In each case, a more robust upregulation of protein ex-

pression was found by combining exercise and GW1516 treat-

ment relative to either drug or exercise alone (Figure 2D). Altered

triglycerides are one way to assess changes in muscle oxidative

capacity. Triglyceride levels were unchanged in vehicle- or

GW1516-treated sedentary mice but showed a striking increase

with exercise. In contrast, this increase was completely reversed

by GW1516 treatment, presumably because of enhanced fat

utilization (Figure S1D).

GW1516 and Exercise Training Synergistically
Increase Running Endurance
As described above, although GW1516 treatment alone induces

widespread genomic changes associated with oxidative metab-

olism, it fails to increase running endurance. On the other hand,

drug treatment in conjunction with exercise produces an

enriched remodeling program that includes a series of transcrip-

tional and posttranslational adaptations in the skeletal muscle.

This suggests that exercise training serves as a key trigger to

unmask a cryptic set of PPARd target genes, leading us to re-ex-

amine the ability of the drug to modulate endurance. Indeed, the

same dose and duration of GW1516 treatment that previously

failed to alter performance, when paired with 4 weeks of exercise

training, increases running time by 68% and running distance

by 70% over vehicle-treated trained mice (Figures 3A and 3B,

compare week 5). It is also important to note that comparison

of running time and distance before (week 0) and after (week 5)

exercise and drug treatment revealed a 100% increment in

endurance capacity for individual mice, underscoring the
–11, August 8, 2008 ª2008 Elsevier Inc. 3



Figure 3. Running Endurance and Gene Sig-

nature in Exercise-Trained Mice

(A and B) Running endurance was tested in V-

(open bars) and GW- (black bars) treated mice be-

fore (Week 0) and after (Week 5) exercise training.

Running endurance is depicted as time (A) and

distance (B) that animals in each group ran. Data

are represented as mean ± SD (n = 6). *** indicates

statistically significant difference between V- and

GW-treated exercised mice (p < 0.001) (one-way

ANOVA; post hoc: Tukey’s multiple comparison

test).

(C) Venn diagram comparing GW, Tr, and Tr+GW

target genes identified in microarray analysis of

quadriceps (n = 3). The selection criteria used

a p < 0.05 on Bonferroni’s multiple comparison

test.

(D) Classification of target genes in Tr+GW mice.

(E) Relative expression of 48 unique TR+GW target

genes in GW, TR, TR+GW, and VP16-PPARd mus-

cles. Each condition is represented by data from

two samples (each sample is pooled from three

mice). (Color scheme for fold change is provided.)
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robustness of the combination paradigm (Figures 3A and 3B). Fi-

nally, it is noteworthy that the combined effects of GW1516 and

exercise reduces the ratio of epididymal fat to body weight and

fat cross-sectional area in these mice (Figures S1E and S1F),

suggesting the broader systemic effects of this protocol.
PPARd Agonist and Exercise Establish
an Endurance Gene Signature
To dissect the mechanism underlying the super-endurance phe-

notype, we conducted a comprehensive study of the muscle

transcriptome induced by ligand, exercise, or the combination,

which produced three overlapping networks of 96, 113, and

130 genes, respectively (Figure 3C). Approximately 50% of the

target genes were common between GW1516 and exercise,

demonstrating that PPARd activation partially mimics exercise.

To our surprise, combined GW1516 treatment and exercise es-

tablished a unique gene expression pattern that was neither an

amalgamation nor a complete overlap of the individual interven-

tions (Figure 3C). This signature included 48 new target genes

(Table S1) not regulated by either GW1516 or exercise alone
4 Cell 134, 1–11, August 8, 2008 ª2008 Elsevier Inc.
while excluding 74 genes regulated by

GW1516 or exercise (selective genes

are listed in Table S3). The majority of

the genes in the GW1516-exercise signa-

ture were induced (108/130), the com-

ponents of which are described in

Figure 3D. Although the largest gene sub-

class (32% of genes) was linked to

positive regulation of aerobic capacity,

additional pathways implicated in muscle

remodeling and endurance were also

represented in the signature (see Table

S2 for detailed description). It is notewor-

thy that comparative expression analysis
of the 48 exclusive genes of the endurance signature (but not

of either intervention alone) revealed a striking similarity to

‘‘untrained’’ VP16-PPARd transgenic mice (Figure 3E). This

observation confirms the primary dependence of the 48

genes on PPARd and points to the possibility that exercise-

generated signals may function to synergize PPARd transcrip-

tional activity to levels comparable to transgenic overexpression.

AMPK-PPARd Interaction in Transcriptional Regulation
What might be the molecular interface between mechanical

exercise and PPARd transcription? Exercise training is known

to activate multiple kinases, among which AMPK has profound

effects on skeletal muscle gene expression and oxidative

metabolism (Chen et al., 2003; Reznick and Shulman, 2006).

Indeed, mice defective for AMPK signaling in muscle exhibit

reduced capacity for voluntary running (Mu et al., 2001;

Thomson et al., 2007). As previously observed (Durante

et al., 2002; Frøsig et al., 2004), we found increased AMPK ac-

tivation in the quadriceps of exercised mice relative to the sed-

entary controls (Figure 4A). Furthermore and unexpectedly,

AMPK is constitutively activated in muscles of VP16-PPARd



Figure 4. Synergistic Regulation of Muscle

Gene Expression by PPARd and AMPK

(A and B) AMPK activation by exercise (A) and

VP16-PPARd overexpression (B) in skeletal muscle.

(C) Comparison of Tr+GW and AI+GW dependent

gene signatures in quadriceps (N = 3). The selec-

tion criteria used is similar to one used in

Figure 3C.

(D) Classification of 52 targets that were common

to Tr+GW and AI+GW gene signatures.

(E–J) Expression of Scd1 (E), ATP citrate lyase

(Acly) (F), HSL (Lipe) (G), Fabp3 (H), Lpl (I), and

Pdk4 (J) transcripts in quadriceps of mice treated

with vehicle (V), GW1516 (GW, 5 mg/kg/day),

AICAR (AI, 250 mg/kg/day), and the combination

of the two drugs (GW+AI) for 6 days. Data are pre-

sented as mean ± SEM (n = 6). * indicates statisti-

cally significant difference between V and indi-

cated groups (p < 0.05, one-way ANOVA; post

hoc: Dunnett’s multiple comparison test).
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transgenic mice in absence of exercise or drug (Figure 4B). In

contrast, in our experiments, GW1516 treatment alone does

not activate AMPK in either sedentary or exercise trained mus-

cles, as previously suggested by some (Terada et al., 2006)

but not by others (Kramer et al., 2005, 2007). Taken together,

these results strongly suggest that the ability to promote en-

durance in mice is associated with activation of both AMPK

and PPARd.

According to this hypothesis, selective coactivation of AMPK

and PPARd would induce gene expression changes that mimic

those triggered by combined exercise and PPARd as well as

VP16-PPARd overexpression. To investigate this possibility,

we compared the transcriptional changes induced in skeletal

muscle by combined exercise and GW1516 treatment with

that of combined AMPK activator (the cell-permeable AMP an-

alog AICAR) and GW1516 treatment. It is noteworthy that si-

multaneous GW1516 and AICAR treatment created a unique

gene expression signature in the quadriceps of untrained

C57Bl/6J mice (Figure S2) that shares 40% of the genes with
Cell 134, 1
that of combined GW1516 treatment

and exercise (Figure 4C). Classification

of the 52 genes common to the two sig-

natures (Figure 4D, listed in Table S4) re-

vealed that the majority of the targets

were linked to oxidative metabolism.

Quantitative expression analysis of se-

lective oxidative genes by QPCR

showed that several of these bio-

markers, including Scd1, ATP citrate ly-

ase (Acly), hormone sensitive lipase

(HSL) (Lipe), muscle fatty acid binding

protein (mFABP, Fabp3), Lpl, and Pdk4,

were induced in a synergistic fashion

by GW1516 and AICAR in the quadri-

ceps (Figures 4E–4J). It is also notewor-

thy that all of the above genes were

induced in quadriceps of untrained
VP16-PPARd mice, where AMPK is constitutively active

(Figure S1G). Collectively, these results show that interaction

between AMPK and PPARd substantially contributes to

reprogramming of the skeletal muscle transcriptome during

exercise.

AMPK Increases Transcriptional Activation by PPARd

The above described pathway crosstalk raised the possibility

that AMPK directly regulates the transcriptional activity of

PPARd in skeletal muscles. An analysis of the effects of

GW1516 and AICAR on gene expression in primary muscle cells

isolated from wild-type and PPARd null mice revealed that syn-

ergism is completely dependent on PPARd and lost in the null

cells (Figures 5A–5D). These observations show that AMPK

enhances a subset of ligand-dependent PPARd transcriptional

targets in a cell-autonomous fashion.

To more directly examine this connection, we utilized re-

porter gene expression assays. Cotransfection of either cata-

lytic AMPK a1 or a2 subunits but not control vector with
–11, August 8, 2008 ª2008 Elsevier Inc. 5



Figure 5. AMPK-PPARd Interaction

(A–D) Expression of metabolic genes in wild-type and PPARd

null primary muscle cells treated with V, GW, AI, and GW+AI

for 24 hr.

(E–F and J) AD293 cells were transfected with PPARd+RX-

Ra+Tk-PPRE along with control vector, AMPK a1, a2, and/

or PGC1a as indicated.

(E) Induction of basal PPARd transcriptional activity by AMPK

a1 or a2.

(F) Dose-dependent induction of PPARd transcriptional activ-

ity is enhanced by AMPKa1 (closed circle) or AMPK a2 (closed

square) compared to control (open triangle).

(G–I and K) AD293 cells were transfected and processed as

indicated.

(G–H) Representative blot showing coimmunoprecipitation of

transfected (G) or endogenous (H) AMPK with Flag-PPARd.

(I) Metabolic p32 labeling of PPARd in AD293 cells transfected

as described.

(J) Synergistic regulation of basal (V) and ligand (GW) depen-

dent PPARd transcriptional activity by AMPK a2 subunit and

PGC1a.

(K) Coimmunoprecipitation of PPARd but not AMPK a2 sub-

unit with Flag-PGC1a.

Data in (A)–(D) (n = 6), (E), and (J) (n = 3–4) are presented as

mean ± SEM, and * indicates statistical significance (p < 0.05,

one-way ANOVA;posthoc:Dunnett’s multiplecomparisontest).
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PPARd increased the basal (Figure 5E) and GW1516-depen-

dent transcriptional activity (Figure 5F) of PPARd in inducing

a PPRE-driven reporter gene in AD293 cells. It should be noted

that AMPK overexpression or GW1516 treatment did not

change reporter activity in transfections excluding the PPARd

expression vector (data not shown), negating the possibility

of an effect via RXR. Additionally, in AD293 cells cotransfected

with Flag-PPARd and with either catalytic AMPK a1 or a2 sub-

units, we discovered that each of the AMPK subunits coimmu-

noprecipitated as a complex with Flag-PPARd (Figure 5G).

Furthermore, Flag-PPARd coimmunoprecipitated endogenous

AMPKa subunits from AD293 cells, confirming a tight physical

interaction between the nuclear receptor and the kinase

(Figure 5H). Despite this association, AMPK failed to increase

PPARd phosphorylation. In vivo orthophosphate labeling of

PPARd in AD 293 cells in the presence or absence of either

AMPK alpha isoform under the same conditions where AMPK

promotes PPARd-dependent transcription revealed no change

in overall PPARd phosphorylation (Figure 5I). These data sug-

gest that PPARd phosphorylation is not increased by AMPK

in vivo. However, cotransfection of AMPKa2 and coactivator

PGC1a (a previously reported direct substrate of AMPK) coop-

eratively interact to further induce both the basal and ligand-
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dependent transcriptional activity of PPARd

(Figure 5J). Strikingly, we did not detect physical

interaction between Flag-PGC1a and AMPK

(Figure 5K), though both independently interacted

with PPARd. Collectively, these observations

suggest that AMPK may be present in a transcrip-

tional complex with PPARd, where it can potenti-

ate receptor activity via direct protein-protein
interaction and/or by phosphorylating coactivators such as

PGC1a.

Pharmacologic AMPK Activation Increases
Running Endurance in Untrained Mice
Our findings show that pharmacologic activation of PPARd in

adult mice can increase running endurance only in conjunction

with exercise signals. The central role for AMPK in this process

is especially underscored by the observations that it is both ro-

bustly stimulated by exercise as well as constitutively active in

muscles of VP16-PPARd transgenic mice that exhibit endurance

without exercise. Further, AMPK can integrate multiple tran-

scriptional programs by interacting not only with PPARd but

also other transcriptional regulators of metabolism (e.g.,

PGC1a, PPARa) (Hong et al., 2003; Leff, 2003; Bronner et al.,

2004; Jäger et al., 2007). This raises the interesting question as

to whether chemical activation of AMPK is sufficient to increase

running endurance without exercise.

To test this idea we treated C57B/6J mice with AICAR (500

mg/kg/day) for 4 weeks. AICAR increased phosphorylation of

AMPK a subunit and acetyl CoA carboxylase (ACC) and in-

creased expression of UCP3 in quadriceps, confirming effective

activation of AMPK signaling (Figure 6A). Interestingly, 4 weeks



Figure 6. AICAR Increases Running Endur-

ance

(A–F) C57Bl/6J mice were treated with vehicle

(open bars or thin lines) or AICAR (500 mg/kg/

day, 4 weeks) (closed bars or thick lines).

(A) Representative immunoblots showing levels of

UCP3, phospho-acetyl CoA carboxylase (ACC),

phospho-AMPK, and total-AMPK in quadriceps.

(B) Average body weight.

(C) Percent epididymal fat mass to body weight

ratio.

(D) Oxygen consumption rates (mg/kg/hr) mea-

sured over 12 hr period.

(E) Data in (D) represented as AUC.

(F) Running endurance measured as a function of

time (upper panel) and distance (lower panel).

(G) Representative oxidative genes induced by

AICAR treatment (250 mg/kg/day, 6 days).

(H) Expression of oxidative biomarkers (Scd1,

Fasn, Ppargc1a, Pdk4) in wild-type and PPARd

null primary myoblast treated with vehicle (open

bars) or AICAR (closed bars) for 72 hr.

(I) Model depicting the interaction between exer-

cise and AMPK-PPARd in reprogramming muscle

genome.

Data in (B) and (C) (n = 10), (D) and (E) (n = 4), (F) (n =

15–20), and (H) (n = 9) are presented as mean ±

SEM, and * indicates statistical significance (p <

0.05, unpaired student’s t test).
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of drug treatment decreased the ratio of epididymal fat mass to

body weight and increased oxygen consumption without chang-

ing body weight (Figures 6B–6E), supporting the speculation that

AICAR may positively regulate endurance. Indeed, in a tread-

mill endurance test, ACIAR-treated mice ran longer (�23%) and

further (�44%) than did vehicle-treated mice, revealing that

increase in endurance can be achieved without exercise

(Figure 6F). Furthermore, global gene expression analysis of

quadriceps revealed that AICAR treatment alone upregulated

a set of 32 genes linked to oxidative metabolism (Figure 6G

and Table S5). Notably, 30 of these 32 genes were also upregu-

lated in VP16-PPARd transgenic mice, suggesting that stimula-

tion of oxidative genes by AMPK may depend on PPARd (Table

S5). To test this possibility, we utilized wild-type and PPARd null

primary muscle cells. Treatment of wild-type primary cells with
Cell 134, 1
AICAR (for 72 hr) increased expression

of key oxidative biomarker genes (Scd1,

fasn [FAS], Ppargc 1a, Pdk4) (Figure 6H).

In contrast, AICAR failed to increase the

expression of the above genes in PPARd

null cells, demonstrating the requirement

of the receptor for transcriptional effects

of AMPK on oxidative genes.

DISCUSSION

In this study, we show that the AMP-mi-

metic AICAR can increase endurance

in sedentary mice by genetically re-

programming muscle metabolism in
a PPARd-dependent manner. We also found that a PPARd ago-

nist in combination with exercise synergistically induces fatigue-

resistant type I fiber specification and mitochondrial biogenesis,

ultimately enhancing physical performance. These changes cor-

relate with an unexpected but interesting establishment of a mus-

cle endurance gene signature that is unique to the drug-exercise

paradigm. Such a signature is an outcome of molecular crosstalk

and perhaps a physical association between exercise-activated

AMPK and PPARd. These findings identify a novel pharmaco-

logic strategy to reprogram muscle endurance by targeting

AMPK-PPARd signaling axis with orally active ligands.

Transgenic overexpression as well as knockout studies have

identified PPARd and AMPK as key regulators of type I fiber

specification and endurance adaptations during exercise (Mu

et al., 2001; Röckl et al., 2007; Thomson et al., 2007; Wang
–11, August 8, 2008 ª2008 Elsevier Inc. 7
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et al., 2004). Whether and how these endogenously expressed

regulators can be targeted to reprogram adult muscle without

exercise has been a subject of unresolved speculation. We found

that the AMPK activator AICAR increased oxygen consumption

and endurance in untrained adult mice in part by stimulating

PPARd-dependent oxidative genes. Despite a demonstrated

role for PPARd in endurance, 4 week treatment with a potent

and selective agonist failed to alter either fiber type composition

or endurance, revealing that direct and pharmacologic activation

of PPARd is insufficient to enhance running performance. In con-

trast, transgenic overexpression of activated PPARd at birth

preprograms the nascent myofibers to transdifferentiate into

slow-twitch fibers, thus imparting a high basal endurance capac-

ity to adult transgenic mice. Apparently, once fiber type specifi-

cation is complete in adults, the potential plasticity of muscle to

synthetic activation of a single transcriptional pathway is con-

strained. Along these lines, the unexpected yet successful

reprogramming of endurance in untrained adults with synthetic

AMP-mimetic might be linked to the ability of AMPK to simulta-

neously target multiple transcriptional programs governed by its

substrates such as PGC1a, PPARa and PPARd, triggering a ge-

netic effect akin to exercise (Hong et al., 2003; Leff, 2003; Bron-

ner et al., 2004; Jäger et al., 2007).

Interestingly, the recalcitrance of adult skeletal muscle endur-

ance to manipulation by PPARd agonist alone is relieved by com-

bining drug treatment with exercise. Indeed, this strategy gener-

ates an endurance gene signature that is unique from either

paradigm alone, reflecting a crosstalk between exercise and

PPARd signaling (Table S2). Although exercise activates a cas-

cade of signaling events, we feel AMPK is central to this genetic

adaptation for several reasons. First, AMPK is a metabolic sen-

sor that detects low ATP levels (such as occur during exercise)

and in turn increases oxidative metabolism (Mu et al., 2001;

Reznick and Shulman, 2006). Second, long-term effects of

AMPK are in part mediated via regulation of gene expression

(Reznick and Shulman, 2006). Third, exercise induces activation

and nuclear import of AMPK, where it can potentially interact

with transcription factors (this study and McGee et al. [2003]).

And finally, transgenic mice defective for AMPK activation ex-

hibit reduced voluntary exercise (Mu et al., 2001; Thomson

et al., 2007), making it an attractive exercise cue that modulates

receptor signaling.

The notion that exercise-activated AMPK interacts with

PPARd in regulating gene expression is supported by our dem-

onstration that AMPK associates with PPARd and dramatically

increases basal and ligand-dependent transcription via the re-

ceptor. Despite physical interaction, we found that AMPK does

not induce PPARd phosphorylation in metabolic labeling stud-

ies. Interestingly, AMPK and its previously reported substrate

PGC1a synergistically increased PPARd transcription, suggest-

ing indirect regulation of receptor function by AMPK via coregu-

lator modification. Nevertheless, we cannot rule out the possible

regulation of PPARd by AMPK via direct protein-protein interac-

tion. Indeed, regulation of other transcription factors by AMPK

via similar mechanisms has been previously demonstrated

(Hong et al., 2003; Leff, 2003; Bronner et al., 2004). A physiolog-

ical validation of AMPK-PPARd interaction comes from our

observation that GW1516 and AICAR (AMPK activator) synergis-
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tically induce several endurance-related genes in wild-type but

not in PPARd null primary muscle cells. More importantly, treat-

ment of animals with AICAR and GW1516 creates a gene signa-

ture in skeletal muscle that replicates up to 40% of the genetic

effects of combined exercise and GW1516 treatment. Notably,

the shared genes between the two profiles are linked to oxidative

metabolism, angiogenesis, and glucose sparing, pathways that

are directly relevant to muscle performance (Figure 4D, listed

in Table S4).

Although not all genes regulated by either exercise (data not

shown) or exercise-PPARd interaction (nonoverlapping signa-

ture, Figure 4D) are AMPK dependent, two key findings assign

a critical role for the kinase in promoting endurance compared

to other known exercise signals (Bassel-Duby and Olson,

2006; Goodyear et al., 1996; Lagouge et al., 2006). First,

AMPK is constitutively active in VP16-PPARd transgenic mus-

cles that exhibit endurance without exercise. Second, AMPK

activation by AICAR was sufficient to increase running endur-

ance without additional exercise signals. Strikingly, the majority

of the oxidative genes (30 out of 32) upregulated by AICAR are

active in super-endurance VP16-PPARd mice and perhaps are

the core set of genes required to improve muscle performance.

Interestingly, AICAR failed to induce oxidative gene expression

in PPARd null muscle cells, indicting the requirement of PPARd,

at least for regulation of oxidative metabolism by AMPK. Collec-

tively, these findings demonstrate a molecular partnership

between AMPK and PPARd in reprogramming skeletal muscle

transcriptome and endurance (Figure 6I) that can be readily ex-

ploited by orally active AMPK drugs to replace exercise.

In humans, endurance exercise leads to physiological adapta-

tions in the cardiopulmonary, endocrine, and neuromuscular

systems (Jones and Carter, 2000; Lucia et al., 2001). Although

our current investigation focused on skeletal muscle, extramus-

cular effects of PPARd, AMPK, and exercise may also contribute

to increased endurance. Although potentiation of extramuscular

adaptations by PPARd and AMPK agonists remains to be stud-

ied, we found that drug treatment can reduce epididymal fat

mass, possibly conferring additional systemic benefits. It is note-

worthy that PPARd is important for normal cardiac contractility,

as well as for the endocrine function of adipose tissue (Wang

et al., 2003; Cheng et al., 2004). Similarly, the activation of

AMPK by metformin is thought to mediate its ability to lower

blood glucose levels (Shaw et al., 2005). In addition to increasing

performance in athletes, exercise has beneficial effects in a wide

range of pathophysiological conditions, such as respiratory

disorders, cardiovascular abnormalities, type 2 diabetes, and

cancer risk. Therefore, understanding the effects of exercise

on normal physiology and identifying pharmaceutically target-

able pathways that can boost these effects is crucial. In this

study, we revealed that synthetic PPARd activation and exer-

cise—and, more importantly, AMPK activation alone—provide

a robust transcriptional cue that reprograms the skeletal muscle

genome and dramatically enhances endurance. We believe that

the strategy of reorganizing the preset genetic imprint of muscle

(as well as other tissues) with exercise mimetic drugs has thera-

peutic potential in treating certain muscle diseases such as

wasting and frailty as well as obesity where exercise is known

to be beneficial.
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EXPERIMENTAL PROCEDURES

Exercise Training and Drug Treatment

Male C57B/6J mice (8 weeks old) were randomly divided into four cohorts

comprising (1) vehicle-treated and sedentary (V), (2) GW1516-treated and sed-

entary (GW), (3) vehicle-treated and exercise-trained (Tr), and (4) GW1516-

treated and exercise-trained (Tr+GW) mice (n = 9). Mice in all groups were

acclimated to moderate treadmill running (10 m/min for 15 min) every other

day for 1 week. After acclimation, basal running endurances for the four groups

were determined via a treadmill running test, where the speed was gradually

increased from 0 to 15 m/min and then maintained constant until exhaustion

(week 0). After the initial test, the mice in the exercise groups were subjected

to 4 weeks (5 days/week) of exercise training. The mice were trained on a tread-

mill inclined at 5�, with progressively increasing intensity and time. At the end

of 4 weeks, all exercise-trained mice were running for 50 min/day at 18 m/min.

During the 4 weeks, mice from both the sedentary and trained groups were

treated with either vehicle or GW1516 (5 mg/kg/day). At the end of the drug

treatment and/or training protocol (week 5), six mice per group were subjected

to the running test. Three mice in each group were not subjected to treadmill

test to confirm that changes observed in the skeletal muscle were not due to

the acute run, but related to the exercise training. It should be noted that the

above interventions do not affect body weight and food intake in mice (data

not shown).

In another study, male C57B/6J mice (8 weeks old) were treated with

GW1516 (5 mg/kg/day, oral gavage), AICAR (250 mg/kg/day, i.p.), or the com-

bination of the two drugs for 6 days for gene expression analysis. Additionally,

C57B/6J mice (8 weeks old) were also treated with AICAR (500 mg/kg/day, i.p.)

for 4 weeks for treadmill running tests.

Tissue Collection

The animals were euthanized by carbon dioxide asphyxiation 72 hr after the

last bout of exercise. Gastrocnemius and quadriceps were isolated, frozen,

and stored at �80�C until further analysis. In GW1516/AICAR study, quadri-

ceps were similarly collected on the sixth day 4 hr after drug treatment.

Metachromatic Staining and Histology

Cryosectioning of frozen gastrocnemius and metachromatic ATPase staining

was performed as previously described (Wang et al., 2003, 2004).

Gene and Protein Expression Analysis

RNA was extracted from gastrocnemius or quadriceps with Trizol and

analyzed for gene expression via real-time quantitative PCR. Protein homog-

enates were prepared from quadriceps and analyzed by western blotting

with myoglobin (Dako), UCP3 (Affinity Bioreagents), CYCS (Santacruz),

SCD1 (Santacruz), tubulin (Sigma), phospho-, total-AMPK a, and phospho-

ACC antibodies (Cell Signaling).

Microarray Analysis

Genome-wide analysis was performed in quadriceps from V, GW, Tr, and

Tr+GW mice and from V, GW, AICAR, and AICAR+GW mice, as well as from

wild-type and VP16-PPARd transgenic mice. Preparation of in vitro transcrip-

tion products, oligonucleotide array hybridization, and scanning were per-

formed through the use of Affymetrix high-density oligonucleotide array mouse

genome 430A 2.0 chips according to Affymetrix protocols. For the minimiza-

tion of discrepancies due to variables, the raw expression data were scaled

with Affymetrix MICROARRAY SUITE 5.0 software, and pairwise comparisons

were performed. The trimmed mean signal of all probe sets was adjusted to

a user-specified target signal value (200) for each array for global scaling.

No specific exclusion criteria were applied. Additional analysis was performed

with the freeware program BULLFROG 7 (Zapala et al., 2002) and the Java-

based statistical tool VAMPIRE (Hsiao et al., 2004).

Cell Culture and Transfection Experiments

Primary muscle cells were isolated from wild-type and PPARd null mice as pre-

viously described (Rando and Blau, 1994). These cells were treated with drugs

as described in the figure legends. AD 293 cells were cultured in DMEM con-

taining 10% serum and penicillin-streptomycin cocktail. Transfections with
CMX-Flag, CMV-myc, pTAP, CMX-Flag PPARd, pTAP-PPARd, CMX-

Tk-PPRE, CMX-bGAL, CMV-myc-hAMPK (a1 and a2 subunits), or CMX-Flag

PGC1a were performed with Lipofectamine 2000. Skeletal muscle C2C12 cells

were cultured in DMEM containing 20% serum and penicillin-streptomycin

cocktail. For differentiation, cells at 80% confluence were switched to a differ-

entiation medium (DMEM + 2% serum) for 4 days to obtain differentiated my-

otubules. Drug treatments are described in the figure legends.

Immunoprecipitation and Western Blotting

Flag-PPARd or Flag-PGC1a was immunoprecipitated from cell lysates with

anti-Flag conjugated agarose beads (Sigma). For coimmunoprecipitation

experiments, SDS was excluded from the lysis buffer. Western blotting was

performed with rabbit anti-Flag, AMPK a subunit, or PPARd antibodies. For

metabolic labeling, transfected AD 293 cells were treated with p32 for 2 hr be-

fore immunoprecipitation.

Data Analysis

Data was analyzed with either one-way ANOVA with an appropriate post hoc

test for comparison of multiple groups or unpaired student’s t test for compar-

ison between two groups as described in figure legends.
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Jäger, S., Handschin, C., St-Pierre, J., and Spiegelman, B.M. (2007). AMP-ac-

tivated protein kinase (AMPK) action in skeletal muscle via direct phosphory-

lation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104, 12017–12022.

Koves, T.R., Li, P., An, J., Akimoto, T., Slentz, D., Ilkayeva, O., Dohm, G.L.,

Yan, Z., Newgard, C.B., and Muoio, D.M. (2005). Peroxisome proliferator-ac-

tivated receptor-gamma co-activator 1alpha-mediated metabolic remodeling

of skeletal myocytes mimics exercise training and reverses lipid-induced mito-

chondrial inefficiency. J. Biol. Chem. 280, 33588–33598.

Kramer, D.K., Al-Khalili, L., Perrini, S., Skogsberg, J., Wretenberg, P., Kan-

nisto, K., Wallberg-Henriksson, H., Ehrenborg, E., Zierath, J.R., and Krook,

A. (2005). Direct activation of glucose transport in primary human myotubes

after activation of peroxisome proliferator-activated receptor delta. Diabetes

54, 1157–1163.

Kramer, D.K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P.M., and

Krook, A. (2007). Role of AMP kinase and PPARdelta in the regulation of lipid

and glucose metabolism in human skeletal muscle. J. Biol. Chem. 282,

19313–19320.

Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono,

H., Takamoto, I., Okamoto, S., Shiuchi, T., et al. (2007). Adiponectin stimulates
10 Cell 134, 1–11, August 8, 2008 ª2008 Elsevier Inc.
AMP-activated protein kinase in the hypothalamus and increases food intake.

Cell Metab. 6, 55–68.

Lucia, A., Hoyos, J., and Chicharro, J.L. (2001). Physiology of professional

road cycling. Sports Med. 31, 325–337.

Leff, T. (2003). AMP-activated protein kinase regulates gene expression by di-

rect phosphorylation of nuclear proteins. Biochem. Soc. Trans. 31, 224–227.

Luquet, S., Lopez-Soriano, J., Holst, D., Fredenrich, A., Melki, J., Rassoulza-

degan, M., and Grimaldi, P.A. (2003). Peroxisome proliferator-activated recep-

tor delta controls muscle development and oxidative capability. FASEB J. 17,

2299–2301.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin,

F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol im-

proves mitochondrial function and protects against metabolic disease by

activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122.

Mu, J., Brozinick, J.T., Jr., Valladares, O., Bucan, M., and Birnbaum, M.J.

(2001). A role for AMP-activated protein kinase in contraction- and hypoxia-

regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094.

McGee, S.L., Howlett, K.F., Starkie, R.L., Cameron-Smith, D., Kemp, B.E., and

Hargreaves, M. (2003). Exercise increases nuclear AMPK alpha2 in human

skeletal muscle. Diabetes 52, 926–928.

Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.B., Lee, A., Xue, B., Mu, J.,
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